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Abstract. Given its relatively long lifetime in the troposphere, carbon monoxide (CO) is commonly employed as 

a tracer for characterizing airborne pollutant distributions. The present study aims to estimate the spatiotemporal 

distributions of ground-level CO concentrations across China during 2013-2016. A refined random-forest-

spatiotemporal-kriging model (RF-STK) is developed to simulate daily gridded CO concentrations (0.1° grid with 

98341 cells) based on the extensive CO monitoring data and the Measurements of Pollution in the Troposphere 5 

CO retrievals (MOPITT-CO). The refined RF-STK model alleviates the negative effects of sampling bias and 

variance heterogeneity on the model training, resulting in cross-validation R2 of 0.51 and 0.71 for predicting daily 

and spatial CO concentrations, respectively. The national population-weighted CO concentrations were predicted 

to be (0.99 ± 0.30) mg m-3 (µ±σ) and showed decreasing trends over all regions of China at a rate of (-0.021 ± 

0.004) mg m-3 per year. The CO pollution was more severe in North China (1.19 ± 0.30) mg m-3, and the predicted 10 

spatial pattern was roughly consistent with the MOPITT-CO. The hotspots in the Central Tibetan Plateau which 

were overlooked by the MOPITT were revealed by the refined RF-STK predictions. This information has an 

implication for improving the MOPITT-CO derivation procedure and air quality management. 

1 Introduction 

Ground-level carbon monoxide is a worldwide atmospheric pollutant posing risks to human health and the 15 

environment (Reeves et al., 2002; White et al., 1990). While CO is formed naturally from the oxidation of methane 

and non-methane volatile organic compounds, anthropogenic emissions from incomplete combustion of fossil 

fuels and biofuels contribute approximately 42% of the total atmospheric CO (Holloway et al., 2000; Pommier et 

al., 2013). China is one of the countries with the most severe CO pollution in the world, and the combustion of 

fossil fuels is the dominant source of anthropogenic CO emissions (Wang et al., 2004; Zhang et al., 2003; Duncan 20 

et al., 2007a). Due to its relatively long lifetime in the troposphere (i.e., one to two months), CO is commonly 

employed as a tracer for characterizing pollution transport (Goldan et al., 2000; Pommier et al., 2010). It is 

therefore essential to obtain the spatiotemporal distribution of CO throughout China for air quality management. 

The national air pollution surveillance network in China has been regularly monitoring ground-level CO 

concentrations since 2013, but these site-based measurements are inadequate to represent the spatially continuous 25 

distributions of CO. 

Chemical Transport Models (CTM) have been employed to estimate ground-level CO concentrations (Hu et al., 

2016; Arellano and Hess, 2006). On the basis of meteorological conditions generated by climate models, CTM 

simulates reactions, transport, and deposition of chemicals in the atmosphere, which generally requires high 

computational cost and a large amount of data inputs such as emission inventories. The prediction performance 30 

of CTM tends to be affected by uncertainties in the simulation algorithms and emission inventories. A CTM 

comparison study found that the difference in transport simulation resulted in considerable discrepancies between 

inter-model CO predictions (Arellano and Hess, 2006; Duncan et al., 2007b). It has been reported that a certain 

CTM underpredicted the monthly average CO concentrations in China by more than 60% (Hu et al., 2016). 

Although the emission inventories for China have been refined in recent years, high uncertainties still exist (Li et 35 

al., 2017). For instance, biomass combustion, residential biofuel consumption, and transient fire events tend to be 

underreported, consequently leading to underestimation of CO emissions in the emission inventories (Wang et al., 

2002; Streets et al., 2003). Despite underestimation by CTM, the general patterns of CO concentrations are 
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captured, and they can be used as prior states for deriving posterior estimates based on satellite retrievals (Deeter 

et al., 2014). 

Multiple satellite instruments have been operating to measure atmospheric CO for more than a decade, including 

MOPITT (Deeter, 2003; Deeter et al., 2010; Emmons et al., 2008), the Atmospheric Infrared Sounder (AIRS) 

(McMillan, 2005), the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography 5 

(SCIAMACHY) (Bovensmann et al., 1999; von Hoyningen-Huene et al., 2006), and the Infrared Atmospheric 

Sounding Interferometer (IASI) (Fortems-Cheiney et al., 2009). Strong absorption lines of CO occur in the thermal 

infrared (4.7 µm) and solar infrared (2.3 µm) spectral regions. Among the abovementioned satellite instruments, 

MOPITT is one of few sensors that are capable of measuring ground-level CO based on the instantaneous 

multispectral retrievals (Streets et al., 2013). The prior state used in MOPITT is simulated by the Community 10 

Atmosphere Model with Chemistry (CAM-Chem), which is an example of a CTM. The MOPITT-CO product 

plays an important role in analyzing spatiotemporal patterns of ground-level CO at large scales (Drummond et al., 

2010; Worden et al., 2013). Compared with the site-based in-situ monitoring data, MOPITT-CO provides repeated 

measures with more extensive spatial coverages. Nevertheless, the sensitivity of MOPITT signals to ground-level 

CO is affected by the thermal contrast between the ground and atmosphere (Warner et al., 2007; Clerbaux et al., 15 

2009). High uncertainties in CO estimations retrieved from MOPITT have been reported in previous studies, and 

more efforts are required to improve the estimation accuracy of CO (Peng et al., 2007; Zhao et al., 2006; Li and 

Liu, 2011).  

Machine learning models are applied to predict the spatiotemporal distributions of atmospheric pollutants, such 

as fine particulate matter (PM2.5) and nitrogen dioxide (NO2), based on the associated satellite retrievals and 20 

ground measurements (Zhan et al., 2018; Reid et al., 2015). Complex structures are built to capture nonlinear and 

high-order interactions between the response and predictor variables. Machine learning models generally show 

superior prediction performance in the presence of abundant training data (Hastie et al., 2009). In the comparisons 

of models predicting PM2.5 concentrations, random forests and gradient boosting machine, which incorporate the 

satellite-retrieved aerosol optical depth (AOD), presented conspicuously good prediction performance (Reid et al., 25 

2015). In addition, the random forest and spatiotemporal kriging (RF-STK) model is proposed to predict the 

ground-level nitrogen dioxide (NO2) concentrations across China based on the satellite-retrieved NO2 density 

(Zhan et al., 2018). To the authors’ knowledge, machine learning models have never been employed to estimate 

nationwide ground-level CO concentrations in China based on the satellite retrievals. 

The present study aims to estimate the spatiotemporal distributions of ground-level CO concentrations across 30 

China during 2013-2016. A refined RF-STK model is developed to simulate daily gridded CO concentrations (0.1° 

grid with 98341 cells) based on the CO monitoring data and the MOPITT-CO with the consideration of extensive 

geographic factors. The strategy of inversely weighting training data by the local population densities is proposed 

to mitigate the effect of sampling bias towards populous areas. The spatial unit of 0.1° is chosen to be consistent 

with the series of our previous studies (Zhan et al., 2017; Zhan et al., 2018). The MOPITT-CO are thoroughly 35 

evaluated against the CO monitoring data. The discrepancies between the MOPITT-CO and the estimated CO 

distributions are highlighted both spatially and temporally. The results of this study are valuable for improving 

the MOPITT retrieval algorithm and air quality management. 
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2 Materials and methods 

2.1 MOPITT-CO retrievals 

The MOPITT operational gas correlation spectroscopy CO product (MOP02J.007), containing retrievals of 

surface CO mixing ratios, is obtained from the Atmospheric Science Data Center (ASDC, 2017). The MOPITT 

onboard the Terra satellite provides tropospheric CO density with global coverage every three days (Edwards, 5 

2004). The CO surface mixing ratios from the Level-2 data product have a spatial resolution of 22 km at nadir. 

The Level-2 product has daytime and nighttime data fields, which are highly correlated (R = 0.99). This study 

chose the daytime data over the nighttime data, as the former exhibit higher correlations with the ground-level 

CO observations than the latter (Table 1). The overall bias of Version 7 is a few percent lower than Version 6 for 

the thermal infrared (TIR)-only, near infrared (NIR)-only, and TIR/NIR products at all levels (Deeter et al., 2014; 10 

Deeter et al., 2017). The TIR/NIR product, which features the maximum sensitivity to near-surface CO, is used 

throughout the study. Through the Gaussian kernel (Goodfellow et al., 2016), the MOPITT noise was filtered and 

gaps were filled, and then the CO retrievals were resampled to 0.1 degree grids.  

2.2 Ground-level CO observations 

Figure 1 shows the locations of the 1656 state-managed sites spread out over all of China, which monitor the 15 

ground-level CO concentrations (MEPC, 2017; EPAROC, 2017; EPDHK, 2017). Most of the sites were in the 

cities of East China, leading to nonnegligible sampling biases. The CO concentrations were measured by the non-

dispersive infrared absorption method and the gas filter correlation infrared absorption method (Zhao et al., 2016). 

Hourly average CO concentrations were collected and cleaned by employing the “three sigma rule” that the values 

falling outside of (μ ± 3σ) were considered outliers (Kazmier, 2003). Less than 0.01% of the hourly data (values 20 

higher than 20.2 mg m-3) were excluded. The days with more than 12-hour observations were included as 

representative days, and approximately 1.67 million records of daily average CO concentrations were obtained 

for the subsequent analyses. 

2.3 Refined RF-STK model 

The refined RF-STK model, consisting of a random forest (RF) submodel and a spatiotemporal Kriging (STK), 25 

was refined to predict the ground-level CO concentrations across China. The RF-STK model utilized the strengths 

of both RF and STK, which had shown the capability of predicting NO2 concentrations in our previous study 

(Zhan et al., 2018). In brief, a RF submodel was first trained with the log-transformed ground-level CO 

observations. As the CO concentrations approximated a lognormal distribution, they were log transformed for 

variance stabilization (De'Ath and Fabricius, 2000). Leveraging variable selection was conducted based on the 30 

pre-experiments. Then, the out-of-bag (OOB) errors of the back-transformed RF predictions were filtered with 

the “three-sigma-rule”, and interpolated with the STK afterwards. Finally, the CO concentrations were predicted 

as the sums of the STK interpolations and back-transformed RF predictions. It is worth mentioning that the RF 

algorithm was refined in the present study by inversely weighting each training sample with the surrounding 

population density to alleviate the effects of sampling bias towards populous areas. The loss function (L) of the 35 

refined RF is as follows: 
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𝐿(𝑦, 𝑓(𝑥)) = ∑ 𝑤𝑛[𝑦𝑛 − 𝑓(𝑥𝑛)]
2/∑ 𝑤𝑛

𝑁
𝑛=1

𝑁
𝑛=1                                      (1) 

where 𝑤𝑛 is the weight of observation 𝑦𝑛 (N observations in total), and 𝑓(𝑥𝑛) is the model prediction. 

2.4 Model input data 

The predictors of environmental conditions for the random forest submodel covered the meteorological conditions, 

land uses, emission inventories, elevation, population densities, normalized difference vegetation index (NDVI), 5 

and road densities. The meteorological conditions included the atmospheric pressure, air temperature, 

precipitation, evaporation, relative humidity, insolation duration, wind speed, and planetary boundary layer height 

(PBLH). Land uses mainly recorded the areas of forests, grasslands, wetlands, artificial surfaces, and waterbodies. 

The emission inventories comprised emission distributions of 10 major atmospheric chemical constituents, such 

as CO, NOX, SO2, PM2.5, and black carbon (BC). The meteorological conditions, except for PBLH, were 10 

interpolated to the 0.1° grid by using co-kriging with elevation. The elevation, land uses, population densities, 

NDVI, PBLH, and emission inventories were resampled to the 0.1° grid by calculating area-weighted means, for 

which additional predictors were generated by applying spatial convolution with Gaussian kernels. The spatial 

convolution smoothed spatial transition and took into account neighboring effects (Goodfellow et al., 2016). 

Please refer to section S.1 and Table S8 in the Supporting Information (SI) for the detailed descriptions and data 15 

sources of the environmental conditions. 

2.5 Model evaluation 

The prediction performance and the predictor effects of the refined RF-STK model were investigated. The 10-

fold site-based cross-validation was applied to evaluate the performance of the refined RF-STK model in 

predicting the CO concentrations. All the monitoring sites were approximately evenly divided into ten groups. In 20 

each iteration, nine groups were used to develop a model, and the remaining group was used for validation. The 

training and prediction steps were duplicated 10 times in order to make ground-level CO observations had paired 

predictions. Various statistical metrics, such as the coefficient of determination (R2), root mean square error 

(RMSE), and mean normalized error (MNE), were used to reflect the prediction performance. In addition, the 

measures of variable importance and partial dependence plots were employed to evaluate the predictor effects. 25 

The improvement in the split-criterion attributed to a predictor variable measures its relative importance in the 

model. A partial dependence plot illustrated the effect of a predictor on the CO concentrations after accounting 

for the average effects of all the other predictors (Friedman, 2001; Hastie et al., 2009).  

2.6 Spatiotemporal analyses 

Detailed spatiotemporal analyses were performed to investigate the correlation strength between the MOPITT-30 

CO and ground-level CO observations, as well as the distributions of the ground-level CO predictions. The whole 

nation was divided into seven conventional regions, including Central, East, North, Northeast, Northwest, South, 

and Southwest China (Fig. 1). For each region, the effectiveness of the MOPITT-CO was evaluated by estimating 

its correlation with the ground-level CO observations at daily, seasonal, and annual scales. In addition, the 

seasonal/annual average concentrations maps were delineated based on the full-coverage CO predictions. The 35 

population-weighted averages of MOPITT-CO (MPW) and ground-level CO predictions (CPW) were summarized 

for the whole nation and by regions. The temporal trends of the national and regional MPW and CPW were evaluated 
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by conducting linear regression on the time series of monthly averages that were deseasonalized by the loess 

smoothers (Cleveland, 1990). More detailed analyses were conducted for the North China Plain (NCP) and the 

Central Tibetan Plateau (CTP). While the air pollution in NCP has been well recognized, the air quality in CTP is 

usually considered to be pristine. Nevertheless, CTP was identified as a potentially overlooked CO hotspot in the 

present study. 5 

2.7 Computing environment 

The data processing and modeling were mainly performed using python and R (Team, 2018). The scikit-learn 

python package was used to develop random forests (Pedregosa et al., 2012). The spatial operations, such as 

spatiotemporal kriging were conducted by using the R packages of gstat (Gräler et al., 2016), rgdal (Bivand et al., 

2017), and sp (Pebesma and Bivand, 2005).  10 

3 Results and discussion 

3.1 Descriptive statistics of MOPITT-CO and ground-level CO observations 

The results of MOPITT-CO, with an overall coverage rate of (3.5 ± 0.5) % (mean ± standard deviation), show 

that the surface CO level for China was (0.25 ± 0.18) mg m-3 during 2013-2016 (Table S1). The MOPITT-CO 

values approximate a lognormal distribution, with a median of 0.20 mg m-3 and an interquartile range (IQR) of 15 

0.17 mg m-3. The MOPITT-CO has the highest coverage in fall (4.2 ± 1.9%) and lowest in summer (2.9 ± 1.5%) 

(Table S2). Southwest China, especially the Sichuan Basin, has the lowest coverage (< 1%) among all the regions 

(Fig. S1). The sparse coverages of MOPITT-CO limit its utility for representing time-series daily CO 

concentrations across China. 

The daily variation obtained in this study is adequate to indicate the change in regulation of CO concentrations 20 

noted in the previous study (Xu et al., 2014) (Fig. S2). The ground-level CO observations show that the average 

CO concentrations for China was (1.07 ± 0.74) mg m-3 during 2013-2016. The ground-level CO observations also 

approximate a lognormal distribution, with a median of 0.90 mg m-3 and IQR of 0.69 mg m-3. High CO 

concentrations (daily average > 4.0 mg m-3) were observed in 704 monitoring sites, with (7.6 ± 0.8) days per year 

(CREAS and CNEMC, 2012). The CO concentrations show a strong seasonality, ranging from (0.81 ± 0.17) mg 25 

m-3 in summer to (1.39 ± 0.38) mg m-3 in winter (Table S3). The national annual average of CO concentrations 

decreased by 6.4% from year 2013 to 2016. Note that the scale of monitoring network was not constant, and the 

number of monitoring sites grew from 743 to 1603 during these four years. However, the monitoring stations were 

still sparse in the western China throughout the monitoring period (Fig. 1). The spatially imbalanced monitoring 

tends to introduce bias and uncertainty to the spatiotemporal statistics of CO concentrations. 30 

3.2 MOPITT-CO evaluation against ground-level CO observations 

The spatiotemporal pattern of the MOPITT-CO was generally consistent with that of the ground-level CO 

observations in China, with r = 0.43 for the multiyear averages and r = 0.37 for the daily values during 2013-2016 

(Table 1). The MOPITT-CO satisfactorily reflected the west-east gradient and the seasonality (i.e., low in warm 

seasons and high in cold seasons) of ground-level CO concentrations (Figs. 5, 8, and S5). More severe CO 35 
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pollution in the eastern part of China (including North, East, Central, and South China) indicated more intensive 

anthropogenic emissions (Fig. S3). At both national and regional scales, the correlation coefficients between 

ground-level CO observations and MOPITT-CO were generally higher in winter than the other three seasons. In 

addition, the correlation strength of daily values exhibited considerable spatial heterogeneity, and the r values 

ranged from 0.58 for South China to 0.17 for Southwest China (Table S4). As expected, it was difficult to capture 5 

the CO variations under highly complex geographic conditions for Southwest China, and the high uncertainty in 

the emission inventories undermined the representativeness of MOPITT-CO for that region. Especially for CTP, 

we found that the MOPITT-CO was almost completely unaffected by the variations of ground-level CO 

observations, with r = -0.03 in contrast to r = 0.34 for NCP (Table 1). The CO hotspots observed in CTP (e.g., 

Naqu and Qamdo) were not recognized by MOPITT-CO, which even falsely showed the opposite seasonality of 10 

ground-level CO observations (Table S3; Figs. 2 and 5).  

The discrepancies between the MOPITT-CO and the ground-level CO observations could be mainly attributed to 

the low sensitivity of the satellite instrument to the ground-level CO variation and the high uncertainty associated 

with the a priori states for the satellite retrieval. The measurement’s lack of sensitivity to ground-level CO 

variation caused the measurement error, which represents the retrieval uncertainty due to uncertainties in the 15 

measured radiances (associated with the instrumental noises) (ASDC, 2017). The inferred emission estimates are 

influenced by the emission inventories and modeling errors (i.e., CAM-Chem model) which potentially result in 

errors in the posterior estimation (Dekker et al., 2017). The CO emission intensities for China have been reported 

to be largely underestimated (Streets et al., 2003; Wang et al., 2004), which might explain the fact that the 

MOPITT-CO was approximately half of the ground-level CO observations (Fig. 8). The results of a national-scale 20 

CTM study for China showed that the ground-level CO predictions were only about one third of the actual 

observations (Hu et al., 2018). Especially for the CTP, the inadequate information about the CO emissions could 

be the main reason why MOPITT-CO overlooked potential CO hotpots, whereas some densely populated cities 

(such as Naqu, Lhasa, and Qamdo) had high values of ground-level CO concentrations (Chen et al., 2019). The 

environmental conditions of the CTP are characterized by high latitude, low temperature, and low pressure. In 25 

addition, high mountains like Qinghai-Tibet Plateau are considered to be obsrtuction which can impede pollutants 

transporting from South and East Asia (Yin et al., 2017). Naqu is sandwiched between the Tanggula and the 

Nyainqen Tanglha Mountains (Fig. 1). In the CTP, biomass (e.g., yak dung) combustion is widely used for energy 

but has low utilization efficiency, resulting in considerable CO emissions (Wen and Tu, 2011; Cai and Zhang, 

2006; Xiao et al., 2015). The population in both Naqu and Qamdo are over one million, leading to relatively 30 

intensive anthropogenic activities in the CTP (NBS, 2010). It is nevertheless laborious and challenging to improve 

the accuracy of emission inventories, which are essential for deriving the MOPITT-CO. It is therefore critical to 

assimilate the MOPITT-CO and the ground-level CO observations for deriving the full-coverage ground-level CO 

distributions (Hooghiemstra et al., 2011). 

3.3 Prediction performance of the refined RF-STK 35 

On the basis of the cross-validation, the refined RF-STK model showed reasonable performance in predicting the 

daily ground-level CO concentrations, with R2 of 0.51, RMSE of 0.54 mg m-3, and MFE of 0.35 (Table S5 and 

Fig. 3). The prediction performance was generally stable across regions and seasons (Fig. S7), and was comparable 

or superior to the previous modelling performance (Table S6). In the absence of nationwide statistical modelling 
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work, only CTM studies were found for large scales in China. The previous CTM work for China underestimated 

the ground-level CO concentrations by 67.2%, with MFE of 0.96. For the RF-submodel, a concise structure was 

achieved through the variable selection, and spurious prediction details were excluded (Fig. S8). 

The RF-submodel with the full variable set generated sharp boundaries circling the desert areas in Northwest 

China, which became blurred in the predictions of the reduced RF-submodel (Fig. S6). In addition, the coordinate 5 

variables (i.e., latitude and longitude) were not considered as candidate variables for the RF-submodel, as artificial 

strips emerged in the prediction maps after including them as was illustrated in our previous study (Zhan et al., 

2017). For the STK-submodel, the predictions were further fine-tuned based on the spatiotemporal patterns of the 

RF-submodel residuals. Consequently, the cross-validation slope increased from 0.55 to 0.64 (Table S7), 

suggesting an improvement in capturing the high and low concentrations.  10 

Compared to the original RF-STK model proposed in our previous study (Zhan et al., 2018), two modifications 

were made in the refined RF-STK model, including sample weighting and logarithm transformation of the 

response variable (i.e., ground-level CO observations). Inversely weighting the training data by their associated 

population densities could alleviate the effects of sampling bias towards populous areas for the national air quality 

monitoring network. As a result, the CO monitoring data from the sparsely populated areas (e.g., the Tibetan 15 

Plateau) gained higher weights in the model training process, leading to more realistic predictions for the 

unmonitored grid cells in those areas. In addition, observations with higher variation would naturally gain higher 

weights during model training given the loss function of squared errors, for which it was suggested to transform 

the predictor variable to achieve homogeneous variation (De'Ath and Fabricius, 2000). The ground-level CO 

observations were heavy-tailed distributed, and hence logarithm transformation was conducted for variance 20 

homogenization prior to training the RF-submodel. Compared with the original RF-submodel, the refined RF-

submodel showed similar performance in the cross-validation and predicted more realistic spatial distributions of 

ground-level CO across China (Table S7 and Fig. S6). The predicted map of the original RF-submodel showed 

the prevalence of higher concentrations than those of the refined RF-submodel, due to overweighting of the 

training data from the areas with more serve CO pollution. 25 

3.4 Important predictors 

The predictor of MOPITT-CO, as the most important predictor in the RF-submodel, exhibited relative importance 

of 9.4%, and the emission-related predictors together accounted for 30.0% of the total predictor importance (Fig. 

4). Absence of single dominant predictor in the model is consistent with the low or moderate correlations between 

the predictors and ground-level CO concentrations (Fig. S9). The partial dependence plots, which delineated the 30 

marginal effects, illustrated the complicated relationships between the predictors and the ground-level CO 

predictions (Fig. S10). The MOPITT-CO and most of the emission-related predictors were processed with 

convolution, suggesting the feasibility of incorporating neighbor conditions in the model. The derivation of 

MOPITT-CO was based on the emission inventories and meteorological fields, and its relatively high importance 

in the RF-submodel was expected. Nevertheless, the high uncertainties pertaining to the derivation process 35 

prevented the MOPITT-CO from playing a dominant role in the model. Among the emission-related predictors, 

the spatial-convolution-processed emission of organic carbon (OC) was the most important predictor (importance: 

8.5%). Moreover, OC and BC emission sources provided valuable additional information on anthropogenic 
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emissions, to which industrial and residential activities contributed more than 80% (Table S9). Given the high 

intercorrelations among the predictors associated with anthropogenic activities, only the most relevant predictors 

were retained in the reduced RF-submodel (Figs. S3 and S9). The predictors which were either redundant or of 

high uncertainty, e.g., the emission of CO, were removed by the variable selection process. 

As the most important group, the meteorological conditions together account for 35.6% of the total predictor 5 

importance (Fig. 4). The relative importance of temperature, evaporation, wind speed, atmospheric pressure, 

PBLH, relative humidity, and insolation duration ranged from 2.8 to 8.6%. Usually, stagnant weather conditions 

occur more frequently in winter, which is characterized by shallow mixed layer, less precipitation and slow wind 

speed. This can capture pollutants discharged by local emissions or transported from other areas and increased 

their surface concentration (Wang et al., 2014). Similar to other airborne pollutants, the CO concentrations are 10 

sensitive to meteorological conditions (Xu et al., 2011). Apparently negative associations of the CO 

concentrations with the PBLH and wind speed were delineated by the corresponding partial dependence plots (Fig. 

S10). High PBLH creates favorable dispersion conditions and hence leads to diluted CO concentrations. 

Considering the relatively long half-life of CO in the troposphere (Goldan et al., 2000), advection associated with 

wind speed plays an important role in the pollutant dissipation. It should be noted that the partial dependence plot 15 

illustrated the overall relationship, which tended to be mixed by both spatial and temporal variations. For instance, 

the partial dependence plot for temperature, with a peak around 20°C, is contrary to empirical knowledge, i.e., 

CO concentrations are known to be highest in winter. This “abnormal” relationship results from the fact that CO-

polluted areas are generally distributed in the warmer zones of China. 

3.5 Spatiotemporal predictions of ground-level CO by refined RF-STK 20 

The spatiotemporal patterns of the refined RF-STK predictions were generally similar to those of the MOPITT-

CO and reflected extensive adjustments based on the ground-level CO observations (Table 1; Figs. 2, 6, and 7). 

The predictions of the refined RF-STK adequately maintained the information of ground-level CO observations 

(ground truth), with R = 0.95 for the daily values (Table 1). At the national level, the multiyear (i.e., 2013-2016) 

averages of CO concentrations were predicted to be (0.99 ± 0.30) mg m-3, with the highest level of (1.32 ± 0.49) 25 

mg m-3 for winter and the lowest level of (0.77 ± 0.22) mg m-3 for summer (Table 2 and Fig. 6). Spatially, the CO 

concentrations were predicted to be the highest in North China and the lowest in South China, with the multiyear 

averages of (1.19 ± 0.30) and (0.77 ± 0.18) mg m-3, respectively (Table 2). It is worth noting that the refined RF-

STK predictions realistically retrieved the CO hotspots in the CTP, which were overlooked by the MOPITT-CO 

(Figs. 2, 7, and S5). The “abnormal” CO seasonality (i.e., low in winter and high in summer) for CTP characterized 30 

by the MOPITT-CO was corrected in the refined RF-STK predictions even though the data quality of ground-

level CO observations for 2013 were in question (Fig. 5). The neglected CO hotspots may be subject to the dual 

influences of the low combustion efficiency of the domestic stoves and the combustion of a large amount of 

biomass energy (Chen et al., 2015). For example, burning yak dung accounted for more than 50% of the energy 

consumption for Nagqu of CTP (Yang and Zheng, 2015).  35 

During 2013-2016, the predicted national average CPW of ground-level CO for China decreased from (1.02 ± 0.34) 

to (0.95 ± 0.30) mg m-3 at a rate of (-0.021 ± 0.004) mg m-3 per year (P<0.01; Table 2 and Fig. 8). The relative 

decrease rate of 4.4% was similar to the 3.8% drop of coal consumption for China during 2013-2016 (CSY, 2010), 
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indicating the importance of coal consumption to CO pollution. The relatively decreasing rate of CO was similar 

to that of NO2, i.e., 3% (Zhan et al., 2018), but much slower than the rate of PM2.5 (Ma et al., 2016). The regional 

average CPW significantly decreased for all regions (P<0.05) except Southwest China (P = 0.16). The decreasing 

trend was most prominent for North China where CO pollution was the most severe, and the decreasing rate was 

(-0.028 ± 0.008) mg m-3 per year. In comparison to the refined RF-STK predictions (which were similar to ground-5 

level CO observations due to the good model fitness), the MOPITT-CO tended to underestimate the decreasing 

trends of ground-level CO concentrations to a certain extent (Fig. 8). The absolute decreasing rate of MPW was 

approximately 60% lower than that of the refined RF-STK predictions. The MPW showed no significant trends for 

East, Northeast, Northwest, South, and Southwest China (P>0.05). Accurate evaluation of the temporal trends is 

essential for air quality management. The refined RF-STK predictions that assimilates the MOPITT-CO with 10 

ground-level CO observations provide more solid information for decision making. 

4 Conclusions 

The spatiotemporal distributions of ground-level CO concentrations for China during 2013-2016 are derived by 

using the refined RF-STK model to fuse the data from the remote sensing and the ground-level observations. The 

RF-STK model shows feasible performance in predicting the daily CO concentrations on the 0.1o grid. As most 15 

of the monitoring sites are in urban areas, the refined RF-STK model inversely weights the ground-level 

observations by the surrounding population densities. Given the fact of monitoring sites clustered in cities, it is 

critical to take into account the effects of sampling bias on modeling the spatiotemporal distributions of 

atmospheric pollutants. While the general patterns are well depicted by the MOPITT-CO, the fine-scale 

distributions are sharpened and corrected with the observations from the air quality monitoring network. By using 20 

the data-fusion approach, we obtain the comprehensive dataset of ground-level CO concentrations for China.  

On the basis of the spatiotemporal predictions, the population-weighted average of ground-level CO 

concentrations was 0.99 ± 0.30 mg m-3 for China during 2013-2016, with an annual decreasing rate of -0.021 ± 

0.004 mg m-3 per year. The CO concentrations were predicted to be the highest in North China (1.19±0.30 mg 

m-3) and the lowest in South China (0.77 ± 0.18 mg m-3). The seasonal averages of the whole China ranged from 25 

0.77 ± 0.22 in summer to 1.32 ± 0.49 mg m-3 in winter, attributing to the seasonality of weather conditions and 

emission intensities as indicated by the variable importance of the RF-STK model. In summary, the present study 

provides important information for improving the MOPITT-CO derivation procedure, such as refining the prior 

status assigned to the overlooked hotspots in the Central Tibetan Plateau. The estimates of ground-level CO 

distributions are valuable for air quality management and human exposure assessment in China, given the utility 30 

of CO for indicating air quality. 

Code availability. The code for random forest is available from scikit-learn (https://scikit-learn.org/stable/). The 

code for spatiotemporal kriging is available from the Comprehensive R Archive Network (https://cran.r-

project.org/web/packages/gstat/index.html). 

Data availability. The hourly CO concentration data are from the Ministry of Ecology and Environment of the 35 

People’s Republic of China (http://datacenter.mep.gov.cn/). The MOPITT data are from the Atmospheric 
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Table 1. Correlations among the ground observations, MOPITT-CO, and the refined RF-STK predictions (Pearson 
correlation coefficients). 

Region/Dataset Paira Daily Monthly Seasonal Annual Spatialb 

Nation O-M 0.37 0.40 0.44 0.44 0.43 

O-P 0.95 0.97 0.97 0.97 0.98 

P-M 0.09 0.1 0.1 0.08 0.08 

Central Tibetan 

Plateau (CTP)c 

O-M -0.03 -0.04 0.10 -0.17 -0.12 

O-P 0.91 0.92 0.93 0.96 1 

P-M -0.04 -0.04 -0.05 0.004 0.6 

North China  

Plain (NCP)c 

O-M 0.34 0.36 0.40 0.30 0.20 

O-P 0.95 0.97 0.98 0.97 0.98 

P-M 0.36 0.40 0.46 0.52 0.57 

X1d O-M 0.37 0.40 0.44 0.44 0.43 

X2d O-M 0.36 0.39 0.42 0.42 0.40 

X1_tcd O-M 0.36 0.44 0.45 0.43 0.41 

X1_tc_scd O-M 0.38 0.47 0.48 0.44 0.42 

a O: ground-level CO observations; M: MOPITT-CO; and P: refined RF-STK predictions;  
b Multiyear averages during 2013-2016. 
c Please refer to Fig. 1 for the locations of CTP and NCP. 5 
d X1: Daytime MOPITT-CO; X2: Nighttime MOPITT-CO; X1_tc: X1 processed with temporal convolution; X1_tc_sc: 

X1_tc processed with spatial convolution; X1 and X2 are highly correlated (R = 0.99). 
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Figure 1: Ground-level CO monitoring network for China in 2013-2016 with 1656 sites in total. The Central Tibetan 

Plateau (CTP) and the North China Plain (NCP) are labelled on the map. The red dashed line represents Heihe-

Tengchong Line.  
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Figure 2: Average ground-level CO concentrations retrieved by the MOPITT for (a) spring, (b) summer, (c) fall, and 

(d) winter during 2013-2016 (unit conversion: 1.0 ppb = 873.36 mg m-3). 
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Figure 3: Performance of the refined RF-STK model in predicting (a) daily, (b) seasonal, (c) annual, and (d) spatial 

(i.e., multiyear average) ground-level CO concentrations across China during 2013-2016. The dashed lines represent 

the 1:1 relationship. 
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Figure 4: Relative importance of the predictor variables in the refined RF-STK model. Please refer to Table S8 for the 

detailed descriptions of the variables. 
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Figure 5: Trend lines of the weekly mean MOPITT-CO versus collocated ground-level CO observations for 2013-2016 

for (a) the whole nation, (b) North China Plain and (c) Central Tibetan Plateau. Grey points represent the original in 

situ values, black solid lines represent the partial predictions which are the same with the sample sizes of situ values, 

red solid lines represent the whole predictions, and blue solid lines represent converted MOPITT-CO values. 5 
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Figure 6: Multiyear average ground-level CO concentrations predicted by the refined RF-STK model for (a) 2013, (b) 

2014, (c) 2015, and (d) 2016.  
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Figure 7: Seasonal predicted ground-level CO concentrations for (a) spring, (b) summer, (c) fall, and (d) winter and 

seasonal mixing ratio volume (mg m-3) of surface CO retrieved from the MOPITT for (e) spring, (f) summer, (g) fall, 

and (h) winter during 2013-2016 in the Central Tibetan Plateau (CTP), respectively. Black triangles are the main cities 

within this area. Please note that there are two different color schemes of this figure. M: MOPITT-CO; and P: refined 5 
RF-STK prediction. 
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Figure 8: Population-weighted seasonal averages of predicted CO concentrations for the major regions and the whole 

nation of China during 2013-2016. Blue solid lines represent the refined RF-STK predictions (refer to the left bar), and 

red solid lines represent converted MOPITT-CO values (refer to the right bar). Since the regions studied are all on the 

surface and the observations are all points, no observations were added to the figures. 5 
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